K7M-DR30UE

抢购进度:
1

产 品 价 格: ¥998.00/支

品牌 / 型号:
LS K7M-DR30UE
配 送 仓 库:
上海现货
购 买 数 量:
总量:1000/支, 最少起订量:1/支
发 货 期 限:
自付款之日起 3 日内发货
浏 览 次 数:
142访问
更 新 时 间:
2020-02-25 10:11

立即购买加入购物车人工咨询

发票支持 普通发票 增值税发票
配送支持 送货上门
支付支持 支付宝 银行转帐
  • 交易流程
  • 购买产品

  • 确定转化订单

  • 支付订单

  • 完成交易

  • 品牌: LS
  • 型号: K7M-DR30UE

其他: 加入收藏违规举报诚信档案更多产品

K7M-DRT60U参数设置
 K7M-DR30UE显示屏幕的LED电源由离散器件组成,这能让同一平台的不同机种使用不同的屏幕。独立充电器件(如前面提到的BQ24032A)可实现的充电效率和电池管理功能,设计人员只要改变充电器件即可适应同一平台的不同机种,比如选择是采用大型或小型电池,或选择是否提供USB充电功能。
  基于这种模块化理念设计的电源系统不会浪费电路板空间,但元件的位置更有弹性,且易于实现产品的差异化。TI的TPS65050就是满足这种模块化平台开发理念的PMU。它集成了两个2.25MHz降压转换器,以支持系统的内核、外设、I/O或存储器电压。这两个转换器的输入电压工作范围均为2.5V至6V,这使得器件能够在节电模式下以轻负载电流工作;当功耗降至1uA以下时,还可置于关断模式。
  此外,TPS65050还集成了两个通用400mA LDO调节器与两个200mA LDO,每个LDO的输入电压范围为1.5V至6.5V,均可通过外部输入引脚来启用,且均可采用其中一个集成的降压转换器供电或直接使用电池供电。
  本文主要介绍变频器在油田的重要生产设备之一-游梁式抽油机节能改造的应用, K7M-DR30UE通过分析设备和工艺对节能和提高工艺水平做了说明,并对改造方案和应用中应该注意的问题做了简单介绍。
  我国的油田多为低渗透的低能、低产油田,不像中东的油田那样具有很强的自喷能力,大部分油田要靠注水压油入井,再靠抽油机把油从地层中提升上来。以水换油、以电换油是我国油田的现实,电费在我国的石油开采成本中占了很大比例。因此,石油行业十分重视节约电能。
LS -[代理]销售  程先生 13918864473 qq 937926739
  在我国的石油开采中,机械采油井占绝大多数,其中有杆采油(有杆抽油井)占总机械采油的90%以上。全国产油量70%以上靠有杆抽油机来完成。其能耗已占油田能耗的三分之一。
  全国每年耗电约四十二亿人民币。由于各油田每年要有几千口新井投入生产, 连同原有设备更新,每年要新增几千台抽油机。抽油机在我国石油开采有重要的地位。
  目前,在油田采用的抽油设备中,以游梁式抽油机最为普遍,数量也最多。2003年,胜利油田某采油厂采用变频器对抽油机实施改造油井泵效率显著提高,日均增油2吨,节电率达到30%以上,下面简单介绍节能改造的原理和操作方案。
  它的动作原理是由交流电动机恒速运转拖动抽油泵,沿着重力作用方向进行往复运动,从而把从数百至数千米的井下抽到地面。分析其负载特性可知其惯量较大,而不同的油井的粘度大小又很不同,当油的粘度较大时,泵的效率也变低,往往启动也很困难。
  该负载又是周期负载,上升、下降行程负载性质亦不同,下降时尚带有位势负载性质。为适应这些复杂的工况,抽油机的配置及其实际工作状态往往只能是大马拉小车。游梁式抽油机运动为反复上下提升,一个冲程提升一次,其动力来自电动机带动的两个重量相当大的钢质滑块,当滑块提升时,类似杠杆作用,将采油机杆送入井中;
滑块下降时,采油杆提出带油至井口,由于电动机转速一定,滑块下降过程中,负荷减轻,电动机拖动产生的能量无法被负载吸引,势必会寻找能量消耗的渠道,导致电动机进入再生发电状态,将多余能量反馈到电网,引起主回路母线电压升高,势必会对整个电网产生冲击,导致电网供电质量下降.
矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。   
  基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差频率控制方式在输出特性方面能得到很大的改善。但是,这种控制方式属于闭环控制方式,需要在电动机上安装速度传感器,因此,应用范围受到限制。无速度传感器矢量控制是通过坐标变换处理分别对励磁电流和转矩电流进行控制,然后通过控制电动机定子绕组上的电压、电流辨识转速以达到控制励磁电流和转矩电流的目的。这种控制方式调速范围宽,启动转矩大,工作可靠,操作方便,但计算比较复杂,一般需要专门的处理器来进行计算,因此,实时性不是太理想,控制精度受到计算精度的影响。 
  直接转矩控制是利用空间矢量坐标的概念,在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩,通过检测定子电阻来达到观测定子磁链的目的,因此省去了矢量控制等复杂的变换计算,系统直观、简洁,计算速度和精度都比矢量控制方式有所提。即使在开环的状态下,也能输出的额定转矩,对于多拖动具有负荷平衡功能。 控制在实际中的应用根据要求的不同而有所不同,可以根据控制的理论对某一个控制要求进行个别参数的化。例如在压变频器的控制应用中,就成功的采用了时间分段控制和相位平移控制两种策略,以实现一定条件下的电压波形。 
  在实际应用中,还有一些非智能控制方式在变频器的控制中得以实现,例如自适应控制、滑模变结构控制、差频控制、环流控制、频率控制等。  智能控制方式主要有神经网络控制、模糊控制、专家系统、学习控制等。在变频器的控制中采用智能控制方式在具体应用中有一些成功的范例。   
  神经网络控制方式应用在变频器的控制中,一般是进行比较复杂的系统控制,这时对于系统的模型了解甚少,因此神经网络既要完成系统辨识的功能,又要进行控制。而且神经网络控制方式可以同时控制多个变频器,因此在多个变频器级联时进行控制比较适合。但是神经网络的层数太多或者算法过于复杂都会在具体应用中带来不少实际困难。模糊控制算法用于控制变频器的电压和频率,使电动机的升速时间得到控制,以避免升速过快对电机使用寿命的影响以及升速过慢影响工作效率。模糊控制的关键在于论域、隶属度以及模糊级别的划分,这种控制方式尤其适用于多输入单输出的控制系统。 
  专家系统是利用所谓“专家”的经验进行控制的一种控制方式,因此,专家系统中一般要建立一个专家库,存放一定的专家信息,另外还要有推理机制,以便于根据已知信息寻求理想的控制结果。专家库与推理机制的设计是尤为重要的,关系着专家系统控制的劣。应用专家系统既可以控制变频器的电压,又可以控制其电流。学习控制主要是用于重复性的输入,而规则的PWM信号(例如中心调制PWM)恰好满足这个条件,因此学习控制也可用于变频器的控制中。学习控制不需要了解太多的系统信息,但是需要1~2个学习周期,因此快速性相对较差,而且,学习控制的算法中有时需要实现超前环节,这用模拟器件是无法实现的,同时,学习控制还涉及到一个稳定性的问题,在应用时要特别注意。            随着电力电子技术、微电子技术、计算机网络等新技术的发展,变频器的控制方式今后将向以下几个方面发展。现在,变频器的控制方式用数字处理器可以实现比较复杂的运算,变频器数字化将是一个重要的发展方向,目前进行变频器数字化主要采用单片机MCS51或80C196MC等,辅助以SLE4520或EPLD液晶显示器等来实现更加完善的控制性能。    
  单一的控制方式有着各自的缺点,并没有“万能”的控制方式,在有些控制场合,需要将一些控制方式结合起来,例如将学习控制与神经网络控制相结合,自适应控制与模糊控制相结合,直接转矩控制与神经网络控制相结合,或者称之为“混合控制”,这样取长补短,控制效果将会更好。  
  计算机网络的发展,使“天涯若咫尺”,依靠计算机网络对变频器进行远程控制也是一个发展方向。通过RS485接口及一些网络协议对变频器进行远程控制,这样在有些不适合于人类进行现场操作的场合,也可以很容易的实现控制目标。
  随着可持续发展战略的提出,对于环境的保护越来越受到人们的重视。变频器产生的次谐波对电网会带来污染,降低变频器工作时的噪声以及增强其工作的可靠性、安性等等这些问题,都试图通过采取合适的控制方式来解决,设计出绿色变频器。
  变频器的控制方式是一个值得研究的问题,依靠致力于这项工作的有识之士的共同努力,使国产变频器早日走向世界市场并且成为一流的产品。以往的变频调速恒压供水设备,往往采用带有模入/模出的可编程控制器或PID调节器,PID算法编程难度大,设备成本,调试困难。随着电力电子技术的发展,采用带有内置PID功能的变频器生产出的恒压供水设备,降低了设备成本,提了生产效率,节省了安装调试时间。
  中变频器的作用是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化。传感器的任务是检测管网水压,压力设定单元为系统提供满足用户需要的水压期望值。压力设定信号和压力反馈信号在输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输出给变频器一个转速控制信号。
  还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由PID回路调节器在调节器内部进行运算后,输出给变频器一个转速调节信号,如图1中虚线所示。一般的供水设备控制1~3台水泵,1~2台工作,1台备用。在这些水泵中,一般只有一台变频泵。当供水设备供电开始工作时,先起动变频泵, K7M-DR30UE管网水压达到设定值时,变频器的输出频率则稳定在一定的数值上。
  而当用水量增加,水压降低时,传感器将这一信号送入可编程控制器或PID回路调节器,可编程控制器或PID回路调节器则送出一个较用水量增加前大的信号,使变频器的输出频率上升,水泵的转速提,水压上升。如果用水量增加很多,使变频器的输出频率达到大值,仍不能使管网水压达到设定值时,可编程控制器或PID回路调节器就发出控制信号,起动一台工频泵,其他泵依次类推。反之,当用水量减少,变频器的输出频率达到小值时,则发出减少一台工频电机的命令。图1中M1~M3为电机,P1~P3为水泵,JC1~JC6为电机起、停、互相切换的交流接触器。 
  针对传统的变频调速供水设备的不足之处,国外不少生产厂家近年来纷纷推出了一系列新型产品,如ABB公司的ACS600、ACS400系列产品,富士公司的G11S/P11S系列产品,北京菱科LK600P系列。这些产品将PID调节器以及简易可编程控制器的功能都综合进变频器内,形成了带有各种应用宏的新型变频器。这类变频器的价格仅比通用变频器略微一点,但功能却强很多,所以我们在山东文登曲轴厂新建的生活小区中就采用了这种新型的设计方案。在这套给水设备中,我们采用了ABB公司的ACS601-0011-3带内置PID功能的变频器,可编程控制器选用西门子S7-214-1BC10-0xB0型,具体原理框图如图2所以示。图2中M1~M2为电机,P1~P2为水泵,JC1~JC4为电机起、停、互相切换的交流接触器。 
  该给水设备采用2台水泵,一用一备,由可编程控制器定时切换。若用水量大,变频器也可以通过可编程接口向可编程控制器发出信号,由可编程控制器控制两台泵同时工作,一台变频运行,一台工频运行。图2中传感器反馈的水压信号直接送入变频器自带的PID调节器输入口AI2+、AI2-,而压力设定既可以使用变频器的键盘以数字量的形式设定,也可以采用一只电位器以模拟量的形式送入AI1+、AI1-。这样通过变频器的控制面板,在变频器的PID选项中选择合适的PID参数,并经过现场调试校正,设备就可以正常运行了。  
  由于PID运算在变频器内部,这就省去了对可编程控制器存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提了生产效率。由于变频器内部自带的PID调节器采用了化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试非常简单、方便。
  根据造纸工艺要求,我们已经知道纸机对变频器的一些基本要求,现在绝大多数通用型变频器基本都能满足这些条件。设定变频器运行频率:通用型变频器可以从以下几个方面来获得运行频率。在变频器的显示面板上,都有频率增加和频率减少按键,通过它可以改变变频器的运行频率,这是一种数字设定频率的方式,由于这种方式不能在现场实时修改变频器的运行频率,因此,其应用范围受到一定的限制。只能在单电机拖动且不经常修改运行频率的场合中使用。
  模拟端子基本都有电压输入和电流输入两种,电压输入有0~5VDC,0~10VDC,-5~5VDC,-10~10VDC等几种;电流输入基本上有0~20mA和4~20mA两种,可以任意设定其中的一种或多种输入,变频器内部用10位以上的A/D把它转换成数字量。应用这种方式设定变频器的运行频率可以实现外控操作,且在现场可以实时修改,但是众所周知模拟量在传输过程中易受干扰,特别是电压信号,更易受干扰,造成系统运行不稳定,这里建议用电流信号;另外用模拟量设定运行频率,在纸机传动控制系统中还要解决速度同步问题。
  这种设定频率的方式,各种品牌的变频器叫法不一,如ABB变频器叫电动电位器,而富士变频器叫上升/下降功能等,其实际上就是利用变频器本身的多功能数字输入端子来改变变频器的运行频率,且升/降速的速率可调。这种方式在纸机传动系统中以八缸纸机应用为典型。
  这种以串行通讯的方式设定变频器的运行频率在大型纸机传动系统中应用为广泛。常见的有RS-485或CAN总线等。当然,在通用型变频器的频率设定方式中,常见的是以上4种,这4种方式也并非独立存在,它们可以组合使用,例如ABB800系列变频器在设定频率时就可以用模拟量的代数和,多个模拟量的大值,多个模拟量的小值,模拟量的乘积,模拟量与通讯量的和等多种组合方式,在使用中,应根据实际情况,灵活运用。
  交流电机是通过改变其输入三相电源任意两相的相序来改变其旋转方向的,在变频中只需给它一个电平信号自动调整其两相相序,从而改变电机的旋转方向,在设计传动系统中,根据工艺要求决定是单向或是双向运行,在纸机传动系统中,都是单方向,可以通过变频器参数规定其旋转方向。
限幅是规定系统正常运行时的参数范围,如大转矩,电流频率等对于不同的系统来说其设置也不相同。其它除了以上三类参数之外还有输出信号类,恒速类,加减速时间等多种,将根据不同类型的变频器单独介绍。ABB变频器是应用较为广泛的一种品牌,现在主要有两大系列:ACS800系列,具有各种功能等级。
  从2.2kW到30kW范围内的各种功率等级。另外在小功率当中还有ACS100系列。ABB变频器以其稳定的性能,低廉的价格在纸机传动系统中被广泛应用,这里从我们多年来对ABB变频在纸机传动应用中遇到的需经常改动的一些参数加以说明。它是设定电机信息的一组参数,只需在第一次运行时设置以后就不需要再改变了,这一组参数代码范围从9901~9910共10个参数。
  电机信息包括电机额定电压(9905)额定电流(9906)额定频率(9907)额定速度(9908)额定功率(9909)。这些参数的获得是从电机的铭牌数据中得到。例如一台四极三相异步电动机Pn=30kW,In=59A,nN=1450r/min fN=50Hz,UN=380V,则设置参数时:9906=59.0,9907=50.0 9908=1450 9909=30.0。
  功率因数降低的危险;频繁的高压冲击会损坏电动机,造成生产效率降低、维护量加大,极不利于抽油设备的节能降耗,给企业造成较大经济损失。游梁式抽油机引入两个大质量的钢质滑块,导致抽油机的起动冲击大等诸多问题。
  除上述两方面问题外,油田采油的特殊地理环境决定了采油设备有其独特的运行特点:在油井开采前期储油量大,供液足,为提高功效可采用工频运行,保证较高产油量;在中后期,由于石油储量减少,易造成供液不足,电动机若仍工频运行,势必浪费电能,造成不必要损耗,这时须考虑实际工作情况,适当降低电动机转速,减少冲程,有效提高充盈率。
  目前,对游梁式抽油机的交流变频调速技术改造主要有以下两个方面的优点:(1)提高电网质量,减小对电网影响。这主要集中在供电企业对电网质量要求较高的场合,为避免电网质量的下降,需引入变频控制,其主要目的就是减小抽油机工作过程对电网的影响。
  一方面,油田抽油机为克服大的起动转矩,采用的电动机远远大于实际所需功率,工作时电动机利用率一般为20%~30%,最高不会超过50%,电动机常处于轻载状态,造成资源浪费。另一方面,抽油机工作情况的连续变化,取决于地下的状态,若始终处于工频运行,也会造成电能浪费。为了节能,提高电动机工作效率,需进行变频改造。
  简单降速方式:直接加装变频器并将电动机运行频率降下来,降低电机转速,增加每个冲程的时间,达到节能效果。实际应用中能达到15%-30%的节电效果。
  变化冲程方式:经过实测井况和油水比例,根据游梁式抽油机的运行特性,对每个冲程中下降和提升设置不同的频率,随时调整电动机的转速,抽油杆慢速下降快速提升,不仅达到节电效果,而且能够有效地调整油水比例,提高产量。实际应用中对近40台改造后的游梁式抽油机现场实测,较工频运行时平均节电38%,如果再计算产油量的提高,综合效益非常可观。
  在实际应用过程中出现了许多问题,主要集中在游梁式抽油机发电状态产生能量的处理上。对于上述第一种情况,采用变频器加能耗制动单元可较方便实现,这是以多耗电能为代价的,主要因为发电能量不能回馈电网造成。在未采用变频器时,电动机处于电动状态时,从电网吸收电能;电动机处于发电状态时,释放能量,电能直接回馈电网的,并未在本地设备上耗费掉。
  综合表现为抽油机供电系统的功率因数较低,对电网质量影响较大。但在使用普通变频器时,情况发生了变化。普通变频器输入是二极管整流,能量不可反方向流动。上述这部分电能没有流回电网的通路,须用电阻就地消耗,这是必须使用能耗制动单元的原因。
  使用环境对变频调速系统的影响不容忽视,变频调速系统安装位置大多数是野外的抽油机附近,降雨、结露、潮湿、冰冻、灰尘、昆虫、小动物都会对变频器造成严重损害,同时还要防盗。这些情况要在安装之初就充分解决,目前大多数现场采用的办法是双层、防水防尘配电柜来解决上述问题。 K7M-DR30UE这样基本上能解决野外作业的环境影响,但是同时造成散热不良的问题,为保证正常工作,需要在变频器容量的选择上充分考虑。
  电网质量对变频器的影响也很大,游梁式抽油机的供电线路较远,电网容易产生波动,很多对电网稳定要求高的变频器会经常出现过电压或者欠电压保护,因为变频器具备适应电网波动较大场合使用的特性,所以应用变频器以来,虽然电网有较大波动(310V――430V)之间,一直能够正常运行。
 
公司提供定制,加工,解决方案。
产品技术参数
品牌: LS
型号: K7M-DR30UE

• 包装

纸盒包装,木箱包装

• 取货

送货上门,验货自提

K7M-DRT60U参数设置
  • 上海曦龙电气设备有限公司
  • 联系:尹世建     
  • 会员:离线 加为商友 发送信件
  • 电话:
  • 手机:
  • 地区:上海
  • 地址:上海奉贤南奉149